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1. Modern calculus of variations,  

Genus and category 

The Min-Max principle in critical point theory is 

introduced by Ljusternik and Schnirelman, 1929 is 

based on the concept of category of a set A in a 

Banach space E.  

Mark Krasnoselskii and others employed the 

concept of genus instead of category. 

Let E be a real Banach space. Let us denote 

by U the class of all closed subsets A ϵE\{0}, 

that are symmetric with respect to the origin, 

that is, uϵA implies -uϵA. 



Definition 1. Let AϵU. The Krasnoselskii 

genus    γ(A ) is defined as being the least 

positive integer k such that there is an odd 

mapping ϕϵC(A,Rk) , such that ϕ(x)≠0 for all 

xϵA. If such a k does not exist we set γ(A )=∞.  

Furthermore, by definition γ(Ø)=0. (see[6]) 

Theorem 1 (Lyusternik-Schnirelman, 1929).  

Let  I∈ C1(RN ;R) be an even function. 

Then, the restriction of  I to the unit sphere 

SN−1 of RN possesses at least N distinct 

pairs of critical points. 



Lev G. Schnirelmann,  

02.01, 1905, Gomel – 

24.09 1938,  Moscow 

Lazar Aronovich Lyusternik,  

31 .12.1899-, Zdunska wola - 

 23 .07. 1981,  Moscow 

 

Calculus of variations 1927-1930, 

Lyusternik, Schnirelmann, Morse. 



MARSTON MORSE 

24.03.1890 , Waterville- 

22.06.1977,  Princeton 

Mark Aleksandrovich 

Krasnoselskii,  

27.04.1920 , Starokonstantinov-  

13.02.1997, Moscow 



This result has many infinite dimensional 

extensions that naturally require some 

additional compactness conditions.  

 

Usually, this is the Palais-Smale (PS) 

condition.  

 

Let C1(E;R) denote the set of functionals 

that are Fréchet differentiable and whose 

Fréchet derivatives are continuous on E.  



Definition 2. We say that the functional 

IϵC1(E;R) satisfies the Palais–Smale (PS) 

condition if every sequence (un) in E, such 

that I(un) is bounded and I’(un)→0 as  

n →∞, has a convergent subsequence.  

 

Here, the sequence (un) is called a (PS) 

sequence (see [2], [7],[9],[10]). 



Theorem 2 (Clark, 1973, [4],[5]).  

Let E be a real Banach space, IϵC1(E;R) 

with I  even, bounded from below, and 

satisfying the (PS) condition.  

Suppose I(0) = 0, there is a set K in E such 

that K is homeomorphic to Sn-1 by an odd 

map and sup{I(u):uϵK}<0.  

Then, I possesses at least n disjoint pairs of  

critical points. 



 

Prof. Astrid Halanay 

and 

 

Prof. Mark 

Krasnoselskii 

 

at CDU’ IV, 

University of Ruse, 

Bulgaria, 1989. 





Let E be a Banach space, c ∈ R and I ∈ 

C1(E,R). Set 

Σ= {A ⊂ E \ {0} : A is closed in E and 

symmetric with respect to 0}, 

Kc = {u ∈ E : I(u) = c, I′(u) = 0},  

Ic = {u ∈ E : I(u) ≤ c}. 

 

Definition 1. For A ∈ Σ we say genus of A is 

n (denoted by γ(A) = n) if there is an odd 

map ϕ ∈ C(A,RN \ {0}) and n is the smallest 

integer with this property. 



Theorem 3. Let I be an even C1 functional 

on E and satisfy the (PS) condition. For 

any n ∈ N, set 

Σn = {A ∈ Σ: γ(A) ≥ n},  

cn = infA∈ Σn supu∈A I(u). 

 

(i) If Σn ≠ ∅ and cn ∈ R, then cn is a critical 

value of I. 

(ii) If there exists r ∈ N such that  

cn = cn+1 = ・ ・ ・ = cn+r = c ∈ R and 

c ≠I(0), then γ(Kc) ≥ r + 1. 



Theorem 4  [Liu Wang] 2015.]  

Let X be a Banach space, I ∈ C1(X,R). Assume that I 

satisfies the (PS) condition, it is even and bounded 

from below, and I(0) = 0. If for any k ∈ N, there exist 

a k-dimensional subspace Xk of X and ρk > 0 such 

that 

supXk∩SkI < 0, where S = {u ∈ X, ∥u∥X = ρ}, then at 

least one of the following conclusions holds: 

(i) There exists a sequence of critical points {uk} : 

I(uk ) < 0 for all k and ∥uk∥X→ 0 as k → ∞. 

(ii) There exists r > 0 such that for any 0 < α < r there 

exists a critical point u such that  

∥u∥X = α and I(u) = 0. 

  



Theorem 4 implies the 

existence of infinitely many 

pairs of critical 

points (um,−um), um ≠ 0, 

such that  

I(um) ≤ 0, I(um) → 0, and 

∥um∥X→ 0 as m → ∞ 



2. Minimization theorems  

Let X be a Banach space.  

A minimizing sequence for a functional  

J : X →R is a sequence (uk) such that  

J(uk) →infJ, whenever k → ∞.  

A function J : X → R is lower semicontinuous 

(resp. weakly lower semi-continuous) if when 

uk→u strongly in X, then liminfJ(uk) ≥ J(u), 

 

resp. uk→u weakly in X, then  

liminfJ(uk) ≥ J(u)). 



Theorem 5. If J : X →R is w.l.s.c. on a 

reflexive Banach space E and has a 

bounded minimizing sequence, then J has 

a minimum on X, i.e. there exists minimum 

point u0 ϵX, such that minJ(u)=J(u0). If J : X 

→R  is differentiable, then the minimum 

point is a critical point of J, J’(u0)=0. 
 

 

The existence of a bounded minimizing sequence 

will be in particular insured when J is coercive, 

i.e., such that J(u) → ∞  if ||u||  → ∞ 



 

 

Proposition 1. (S. Li) Let JϵC1(X,R). If J is 

bounded below and satisfies (PS), then J is 

coercive.  
 

Proposition 2. Let JϵC1(X,R). Assume J is 

bounded below and satisfies (PS). Then every 

minimizing sequence has a convergent 

subsequence. 

 
 

 



Definition 3. (Brezis and Nirenberg, 

1991). 

 J satisfies (PS)c  condition if any 

sequence (un) in X, such that J(un)→c 

and J’(un)→0  as n →∞ has a 

convergent subsequence.  

 

If this holds for every cϵR one says that J 

satisfies (PS) condition. 



Theorem 6. (Corollary of Ekeland’s variational 

principle).  

 

Let X be a Banach space, J : X →R be a 

functional bounded from below and 

differentiable on X. Then, for each minimizing 

sequence (uk) of J, there exists a minimizing 

sequence (vk) of J such that   

J(vk) ≤ J(uk), ||uk – vk||→0 and J'(vk)→0  

if k →∞. 



Theorem 7.  Let X be a Banach space,  

J : X →R a functional bounded from below and 

differentiable on X.  

If J satisfies the (PS)c-condition with c = infX J, 

then J has a minimum on X. 







3. Mountain-pass Theorems 

Antonio Ambrosetti, 

25.11.1944, Bari  - 

Paul Rabinowitz,  

15.11.1939,  

Newark, New Jersey - 
 



Theorem 8 (Mountain Pass Theorem, 

[1],[9] ). Let E be a real Banach space and 

 I ∈ C1(E, R) is a functional satisfying (PS) 

condition. Suppose I(0) = 0 and 

(I1) ∃ρ, α > 0 : I|∂Bρ≥ α, 

(I2) ∃e ∈ E \ Bρ : I(e) ≤ 0. 

Then, I possesses a critical value c ≥ α.  

Moreover,  c can be characterized as 

c = inf {maxuϵg([0,1]) I(u) : g∈Γ }, where 

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}. 



Theorem 9  (Symmetric Mountain Pass 

Theorem).  

Let E be a real Banach space and I ∈ C1(E, R) 

with I even. Suppose I(0)=0 and  I satisfies 

(PS) and 

(I1) there exist constants ρ, α > 0 such that 

I|∂Bρ≥ α,  

(I2’) for all finite dimensional subspaces  

Ek ⊂ E, there is an Rk = R(Ek) such that  

I(u) ≤ 0 for u ∈ Ek \ BRk. 

Then I possesses an unbounded sequence of 

critical values. 



Theorem 10  (Mountain Pass Theorem,  

Brezis-Nirenberg [2] ). 

Let E be a real Banach space, I ∈ C1(E, R)  and  

there is an open neighbourhood U of 0 and  

some point  v outside of U such that  

J(0),J(v)<a≤J(u) for all uϵ∂U. 

Consider the family A of all continuous paths A 

joining 0 and v and set  c=inf{maxuϵA J(u): AϵA}.  

Then there exists a sequence (un) in X, such that 

J(un)→c and J’(un)→0  as n →∞ . 

If in addition we assume (PS)c  

then c is  a critical value. 





Left. Graph of the function z=y sin2x.sin2y in the square  

K1=[0,π] x [0,π]. 

Right. Graph of the function z=sin4x.sin4y in the square   

K2=[-π,π] x [-π,π].How many local minima and local maxima  

there exist in the square K2.  Answer: 32 local minima and  32 

local maxima. Why and in which points? 
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GRAZAS POLA SÚA ATENCIÓN ! 
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